COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models

نویسندگان

چکیده

Since December 2019, many statistical spatial–temporal methods have been developed to track and predict the spread of COVID-19 pandemic. In this paper, we analyzed dataset which includes number biweekly infected cases registered in Ontario from March 2020 end June 2021. We made use Bayesian Spatial–temporal models Area-to-point (ATP) Area-to-area (ATA) Poisson Kriging models. With models, effects government intervention on infection risk are considered while ATP used display pandemic over space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian nonparametric models for ranked data

We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We develop a time-varying extension of our...

متن کامل

Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis

Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g.missing data and binary data), and (iii) noisy observations and ...

متن کامل

Bayesian Nonparametric Models

‘ We have been looking at models that posit latent structure in high dimensional data. We use the posterior to uncover that structure. ‘ The two main types are mixtures (and variants, like mixed-membership) and factor models (like PCA, factor analysis, and others). ‘ A nagging concern for these methods is model selection—how do I choose the number of mixture components? the number of factors? ‘...

متن کامل

Spatial Nonparametric Bayesian Models

The prior distribution is an essential ingredient of any Bayesian analysis, and it plays a major role in determining the final results. As such, Bayesians attempt to use prior distributions that have certain properties. Perhaps the main property is a desire to accurately reflect prior information, i.e., information external to the experiment at hand. We would supplement this vague property with...

متن کامل

Nonparametric Bayesian Kernel Models

Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalization of kernel regression based on nonparametric Bayesian models. Functional analytic results ensure that such a nonparametric prior specification induces a class of functions that span ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11061359